Skip to main content



Center for Environment, PFAS, & Cancer Toxicology (CEPaCT)

The Center for Environment, PFAS, and Cancer Toxicology (CEPaCT) will implement innovative environmental and cancer-focused biomedical research projects with bi-directional community outreach, translational, and training initiatives to detect, mitigate, and remediate per- and polyfluoroalkyl substances (PFAS) to minimize cancer risk to improve the quality of life.

CEPaCT has over 100 PFAS related publications. See below for select list.

The Ecosystem - Sources and exposure pathways of PFAS and AFFF

The transdisciplinary CEPaCT utilizes interdisciplinary and multidisciplinary approaches to advance fundamental discoveries related to environment and health and translate research to outcomes to improve community health. The core and project leaders bring decades of integrated center-level leadership, technical and collaborative expertise that coalesce into this center. The resonating theme of the projects and cores are to “inform” and “guide” by leveraging our resources to maximize output and stimulate innovation through hypothesis-driven research. Our focus will be on both long- and novel short-chain PFAS with emphasis on clean energy PFAS given its increasing use, and breakdown products of PFAS, to address carcinogenesis due to exposure. The two biomedical projects focus on understanding testicular and prostate carcinogenesis due to PFAS exposure from drinking water sources, whereas the two environmental projects focus on elucidating fate, transport, and remediation strategies to minimize PFAS contamination. Specific knowledge gaps addressed are to:

i.    Understand the occurrence and transport of polymeric and non-polymeric PFAS used in clean energy,
ii.    Study mechanisms of PFAS partitioning and thermodynamic effects,
iii.    Elucidate molecular structures of partially defluorinated products and complete fluorine balance during PFAS treatment,
iv.    Optimize engineered destructive treatment and toxicity research,
v.    Elucidate epigenetic and metabolomic pathways in an environmentally sensitive (testicular) and a developmentally sensitive (prostate) cancer, in addition to liver and kidney cancers,
vi.    Determine the effect of cross-talk between cancer pathways for intervention, and
vii.    Assess exposure vs cancer risk indicators. In the long-term, we will expand our knowledgebase to evaluating kidney, uterine, and liver cancers with a systems approach to discover mechanism-based end points to inform on cancer risk.

ISRC Research Projects, Outcomes, and Cores

Our research activities are well-supported by outstanding data management and innovative analysis and analytical tools and our training activities are structured to train the next generation of thought leaders in environmental health. Our community-oriented research enabled by the trainees, community partners, and advisory groups serves as vehicles of research translation. Our I-PRA Fellows further disseminate our research to the community. Our constant engagement and interactions will ensure that the CEPaCT can efficiently address short-term goals and well-positioned to address the future challenges in the community.

For Questions and Inquiries Please Contact Dr. Tor Jensen (CEPaCT Administration Lead) or Dr. Joseph Irudayaraj (CEPaCT Director)

 

Select PFAS Publications From CEPaCT Members:

2024

  1. Sands, M., Zhang, X., Spinella, M., Madak-Erdogan, Z., and Irudayaraj, J. Comparative Hepatotoxicity of Novel Lithium Bis(trifluoromethanesulfonyl)imide (LiTFSI) and Legacy Perfluorooctanoic Acid (PFOA) in Male Mice: Insights into Epigenetic Mechanisms and Pathway-Specific Responses. 2024. Environment International, 108556. https://doi.org/10.1016/j.envint.2024.108556
  2. Zhang, X., Sands, M., Lin, M., Guelfo, J., and Irudayaraj, J. In vitro toxicity of Lithium Bis(trifluoromethanesulfonyl)imide (LiTFSI) on human renal and hepatoma cells. 2024. Toxicology Reports. 12: 280-288. doi: 10.1016/j.toxrep.2024.02.008
  3. Boyd, R., Shokry, D., Fazal, Z., Rennels, B., Freemantle, S., La Frano, M., Prins, G., Madak Erdogan, Z., Irudayaraj, J., Singh, R., Spinella, M. Perfluorooctanesulfonic acid alters pro-cancer phenotypes and metabolic and transcriptional signatures in testicular germ cell tumors. 2024. Toxics, 12(4), 232. https://doi.org/10.3390/toxics12040232
  4. Sands, M., Zhang, Z., Jensen, T., La Frano, M., Lin, M., Koester, B., and Irudayaraj, J. PFAS assessment in fish: samples from Illinois waters. 2024. Science of the Total Environment, 172357. doi: 10.1016/j.scitotenv.2024.172357
  5. Sands, M., Zhang, X., and Irudayaraj, J. Kidney toxicology of a novel compound HQ-115 used in energy applications: an epigenetic evaluation. ACS Environmental Science and Technology (In Review) 2024 (bioRXiv doi: https://doi.org/10.1101/2024.04.02.587863)
  6. Zhang, X., Sands, M., La Frano, M., Spinella, M., Masoud, F., Fields, C., Madak-Erdogan, Z., Jensen, T., and Irudayaraj, J. MicroRNA’s and PFAS: A pilot study in blood collected from firefighters. 2024. bioRXiv: doi: https://doi.org/10.1101/2024.04.05.588341.
  7. Santacruz-Marquez R., Safar, A.M., Laws, M.J., Meling, D.D., Liu, Z., Kumar, T.R., Nowak, R.A., Raetzman, L.T., Flaws, J.A. The effects of short-term and long-term phthalate exposures on ovarian follicle growth dynamics and hormone levels in female mice. 2024.  Biology of Reproduction, 110(1): 198-210. DOI: 10.1093/biolre/ioad137
  8. Boyd, R., Shokry, D., Fazal, Z., Rennels, B., Freemantle, S., La Frano, M., Prins, G., Madak Erdogan, Z., Irudayaraj, J., Singh, R., Spinella, M. Perfluorooctanesulfonic acid alters pro-cancer phenotypes and metabolic and transcriptional signatures in testicular germ cell tumors. 2024. Toxics, 12(4), 232. https://doi.org/10.3390/toxics12040232
  9. Guan, Y., Liu Z., Yang, N., Yang, S., Quispe Cardenas, L. E., Liu J.*, Yang, Y.* Near-Complete Destruction of PFAS in Aqueous Film-Forming Foam (AFFF) by Integrated Photo-Electrochemical Processes. Nature Water. 2024 (Accepted)
  10. Liu, Z., Jin, B., Rao, D., Bentel, M., Liu, T., Gao, J., Men, Y., Liu, J.*, Oxidative transformation of Nafion-related fluorinated ether sulfonates: Comparison with legacy PFAS structures and opportunities of acidic persulfate digestion for PFAS precursor analysis. 2024.  Environmental Science & Technology, 58(14): 6415-6424.  https://doi.org/10.1021/acs.est.3c06289.
  11. Rao, D., and Liu, J.*, Photochemical PFAS degradation in ion exchange resin regeneration brine: Effects of water matrix components and technical solutions. ChemRxiv 2024, DOI: 10.26434/chemrxiv-2024-h4bsz
  12. Rao, D.; Liu, J.*, Pretreatment methods for accelerated PFAS degradation in wastewater. ChemRxiv 2024, DOI: 10.26434/chemrxiv-2024-pqr4n
  13. Wang, Y., Zhang, J., Zhang, W., Yao, J., Liu, J., He, H., Gu, C., Gao, G.*, Jin, X. Electrostatic field in contact-electro-catalysis driven c-f bond cleavage of perfluoroalkyl substances. Angewandte Chemie 2024, e202402440. https://doi.org/10.1002/anie.202402440.
  14.  Guelfo, J.L., Ferguson, P.L., Beck, J., Chernick, M. Doria-Manzur, A., Faught, P.W., Flug, T., Gray, E.P., Jayasundara, N., Knappe, D.R.U., Joyce, A.S., Meng, P., Shojaei, M. The dirty side of clean energy: Lithium-ion batteries 1 as a source of PFAS in the environment. 2024. Nature Communications.  
  15. Abaie, E., Kumar, M., Kumar, N., Sun, Y., Guelfo, J. L., Shen, Y., and Reible, D. Application of β-Cyclodextrin Adsorbents in the Removal of Mixed Per-and Polyfluoroalkyl Substances. 2024. Toxics, 12(4), 264. https://doi.org/10.3390/toxics12040264
  16. Koester, B. D., Sloane, S., Powers, E. T., Gordon, R. A., and Speirs, K. E. (2024). Family childcare providers experience with the Child and Adult Care Food Program during the COVID-19 pandemic: Implications for equity and health. 2024. American Journal of Public Health. doi/10.2105/AJPH.2023.307557
  17. Vieytes, C. M., Zhu, R., Gany, F., Koester, B., and Arthur, A. Dietary Patterns Among U.S. Food Insecure Cancer Survivors and the Risk of Mortality: NHANES 1999-2018. 2024.  Cancer Causes & Control. doi/10.1007/s10552-024-01868-2

 

2023

  1. Safar, A.M., Santacruz-Marquez R., Laws, M.J., Meling, D.D., Liu, Z., Kumar, T.R., Nowak, R.A., Raetzman, L.T., Flaws, J.A. Dietary exposure to an environmentally relevant phthalate mixture alters follicle dynamics, hormone levels, ovarian gene expression, and pituitary gene expression in female mice. 2023.  Reproductive Toxicology, 122: 108489.  doi: 10.1016/j.reprotox.2023.108489
  2.  Zhang X, Sands M, Lin M, Guelfo J, Irudayaraj J. In vitro toxicity of LiTFSI on Human Renal and Hepatoma Cells. bioRxiv. 2023:2023.08.15.553404. doi: 10.1101/2023.08.15.553404.
  3. Zhang X, Lin M, Sands M, Irudayaraj J. PFAS assessment in fish – samples from Illinois waters. bioRxiv. 2023:2023.08.29.555412. doi: 10.1101/2023.08.29.555412.
  4. Yang, Zhao, Anderson, T., and Guelfo J.L. Evaluation of extraction techniques for Per- and Polyfluoroalkyl Substances (PFAS) and application to a grocery store food survey and exposure assessment. 2023.  Environmental Science: Processes and Impacts. 25(12), 2015-2030. 10.1039/D3EM00268C
  5. Zhang X, Flaws JA, Spinella MJ, Irudayaraj J. The Relationship between Typical Environmental Endocrine Disruptors and Kidney Disease. Toxics. 2023;11(1):32. PubMed PMID: doi:10.3390/toxics11010032.
  6. Yunqiao Guan  ZL, Nanyang Yang ,Shasha Yang ,Estefanny Quispe-Cardenas ,Jinyong Liu ,Yang Yang. Near-Complete Destruction of PFAS in Aqueous Film-Forming Foam (AFFF) by Integrated Photo-Electrochemical Processes. Nature Water. 2024 (Accepted)
  7. Yang Z, Shojaei M, Guelfo JL. Per- and polyfluoroalkyl substances (PFAS) in grocery store foods: method optimization, occurrence, and exposure assessment. Environmental Science: Processes & Impacts. 2023;25(12):2015-30. doi: 10.1039/D3EM00268C.
  8. Yang N, Yang S, Ma Q, Beltran C, Guan Y, Morsey M, Brown E, Fernando S, Holsen TM, Zhang W, Yang Y. Solvent-Free Nonthermal Destruction of PFAS Chemicals and PFAS in Sediment by Piezoelectric Ball Milling. Environmental Science & Technology Letters. 2023;10(2):198-203. doi: 10.1021/acs.estlett.2c00902.
  9. Shah MM, Ahmad K, Boota S, Jensen T, La Frano MR, Irudayaraj J. Sensor technologies for the detection and monitoring of endocrine-disrupting chemicals. Frontiers in Bioengineering and Biotechnology. 2023;11. doi: 10.3389/fbioe.2023.1141523.
  10. Schaefer CE, Hooper JL, Strom LE, Wu K, Guelfo JL. Per- and polyfluoroalkyl substances in foam and dewatering streams at wastewater treatment plants. AWWA Water Science. 2023;5(4):e1349. doi: https://doi.org/10.1002/aws2.1349.
  11. Schaefer CE, Hooper JL, Strom LE, Abusallout I, Dickenson ERV, Thompson KA, Mohan GR, Drennan D, Wu K, Guelfo JL. Occurrence of quantifiable and semi-quantifiable poly- and perfluoroalkyl substances in united states wastewater treatment plants. Water Research. 2023;233:119724. doi: https://doi.org/10.1016/j.watres.2023.119724.
  12. Rashid F, Dubinkina V, Ahmad S, Maslov S, Irudayaraj JMK. Gut Microbiome-Host Metabolome Homeostasis upon Exposure to PFOS and GenX in Male Mice. Toxics. 2023;11(3):281. PubMed PMID: doi:10.3390/toxics11030281.
  13. Muir DCG, Getzinger GJ, McBride M, Ferguson PL. How Many Chemicals in Commerce Have Been Analyzed in Environmental Media? A 50 Year Bibliometric Analysis. Environmental Science & Technology. 2023;57(25):9119-29. doi: 10.1021/acs.est.2c09353.
  14. Liu W, Zhang X, Wen Y, Anastasio MA, Irudayaraj J. A machine learning approach to elucidating PFOS-induced alterations of repressive epigenetic marks in kidney cancer cells with single-cell imaging. Environmental Advances. 2023;11:100344. doi: https://doi.org/10.1016/j.envadv.2023.100344.
  15. Liu J, Edwards E, Van Hamme J, Manefield M, Higgins CP, Blotevogel J, Liu J, Lee LS. Correspondence on “Defluorination of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) by Acidimicrobium sp. Strain A6”. Environmental Science & Technology. 2023;57(48):20440-2. doi: 10.1021/acs.est.3c06681.
  16. LaFond JA, Hatzinger PB, Guelfo JL, Millerick K, Jackson WA. Bacterial transformation of per- and poly-fluoroalkyl substances: a review for the field of bioremediation. Environmental Science: Advances. 2023;2(8):1019-41. doi: 10.1039/D3VA00031A.
  17. Jin B, Zhu Y, Zhao W, Liu Z, Che S, Chen K, Lin Y-H, Liu J, Men Y. Aerobic Biotransformation and Defluorination of Fluoroalkylether Substances (ether PFAS): Substrate Specificity, Pathways, and Applications. Environmental Science & Technology Letters. 2023;10(9):755-61. doi: 10.1021/acs.estlett.3c00411.
  18. Jin B, Liu H, Che S, Gao J, Yu Y, Liu J, Men Y. Substantial defluorination of polychlorofluorocarboxylic acids triggered by anaerobic microbial hydrolytic dechlorination. Nature Water. 2023;1(5):451-61. doi: 10.1038/s44221-023-00077-6.
  19. Jeong Y, Vyas K, Irudayaraj J. Toxicity of per- and polyfluoroalkyl substances to microorganisms in confined hydrogel structures. Journal of Hazardous Materials. 2023;456:131672. doi: https://doi.org/10.1016/j.jhazmat.2023.131672.
  20. Gao J, Liu Z, Chen Z, Rao D, Che S, Gu C, Men Y, Huang J, Liu J. Photochemical degradation pathways and near-complete defluorination of chlorinated polyfluoroalkyl substances. Nature Water. 2023;1(4):381-90. https://doi.org/10.1038/s44221-023-00046-z.
  21. Chen Z, Zhang S, Wang X, Mi N, Zhang M, Zeng G, Dong H, Liu J, Wu B, Wei S, Gu C. Amine-Functionalized A-Center Sphalerite for Selective and Efficient Destruction of Perfluorooctanoic Acid. Environmental Science & Technology. 2023;57(28):10438-47. doi: 10.1021/acs.est.3c01266.
  22. Camdzic D, Dickman RA, Joyce AS, Wallace JS, Ferguson PL, Aga DS. Quantitation of Total PFAS Including Trifluoroacetic Acid with Fluorine Nuclear Magnetic Resonance Spectroscopy. Analytical Chemistry. 2023;95(13):5484-8. doi: 10.1021/acs.analchem.2c05354.

 

2022

  1. Yu Y, Che S, Ren C, Jin B, Tian Z, Liu J, Men Y. Microbial Defluorination of Unsaturated Per- and Polyfluorinated Carboxylic Acids under Anaerobic and Aerobic Conditions: A Structure Specificity Study. Environmental Science & Technology. 2022;56(8):4894-904. doi: 10.1021/acs.est.1c05509.
  2. Wen Y, Rashid F, Fazal Z, Singh R, Spinella MJ, Irudayaraj J. Nephrotoxicity of perfluorooctane sulfonate (PFOS)-effect on transcription and epigenetic factors. Environ Epigenet. 2022;8(1):dvac010. Epub 2022/06/01. doi: 10.1093/eep/dvac010. PubMed PMID: 35633893; PMCID: PMC9134076.
  3. Speth T, Crimi M, Chowdhury Z, Dickenson E, Guelfo J, Knappe D, Liu J, Leeson A. PFAS are forever? The state of the science and research needs for analyzing and treating PFAS-laden water. AWWA Water Science. 2022;4(2):e1276. doi: https://doi.org/10.1002/aws2.1276.
  4. Silva JAK, Guelfo JL, Šimůnek J, McCray JE. Simulated leaching of PFAS from land-applied municipal biosolids at agricultural sites. Journal of Contaminant Hydrology. 2022;251:104089. doi: https://doi.org/10.1016/j.jconhyd.2022.104089.
  5. Shojaei M, Kumar N, Guelfo JL. An Integrated Approach for Determination of Total Per- and Polyfluoroalkyl Substances (PFAS). Environmental Science & Technology. 2022;56(20):14517-27. doi: 10.1021/acs.est.2c05143.
  6. Shojaei M, Joyce AS, Ferguson PL, Guelfo JL. Novel per- and polyfluoroalkyl substances in an active-use C6-based aqueous film forming foam. Journal of Hazardous Materials Letters. 2022;3:100061. doi: https://doi.org/10.1016/j.hazl.2022.100061.
  7. Rashid F, Dubinkina V, Maslov S, Irudayaraj J, editors. North American Travel Grant Recipient: Effect of Subacute Exposure to PFAS Compounds on Gut Microbial Functions and Liver Metabolome in Mice. INTERNATIONAL JOURNAL OF TOXICOLOGY; 2022: SAGE PUBLICATIONS INC 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA.
  8. Pétré MA, Salk KR, Stapleton HM, Ferguson PL, Tait G, Obenour DR, Knappe DRU, Genereux DP. Per- and polyfluoroalkyl substances (PFAS) in river discharge: Modeling loads upstream and downstream of a PFAS manufacturing plant in the Cape Fear watershed, North Carolina. Science of The Total Environment. 2022;831:154763. doi: https://doi.org/10.1016/j.scitotenv.2022.154763.
  9. McDermett KS, Guelfo J, Anderson TA, Reible D, Jackson AW. The development of diffusive equilibrium, high-resolution passive samplers to measure perfluoroalkyl substances (PFAS) in groundwater. Chemosphere. 2022;303:134686. doi: https://doi.org/10.1016/j.chemosphere.2022.134686.
  10. McDermett K, Anderson T, Jackson WA, Guelfo J. Assessing Potential Perfluoroalkyl Substances Trophic Transfer to Crickets (Acheta domesticus). Environmental Toxicology and Chemistry. 2022;41(12):2981-92. doi: https://doi.org/10.1002/etc.5478.
  11. Liu Z, Chen Z, Gao J, Yu Y, Men Y, Gu C, Liu J. Accelerated Degradation of Perfluorosulfonates and Perfluorocarboxylates by UV/Sulfite + Iodide: Reaction Mechanisms and System Efficiencies. Environmental Science & Technology. 2022;56(6):3699-709. doi: 10.1021/acs.est.1c07608.
  12. Lasee S, McDermett K, Kumar N, Guelfo J, Payton P, Yang Z, Anderson TA. Targeted analysis and Total Oxidizable Precursor assay of several insecticides for PFAS. Journal of Hazardous Materials Letters. 2022;3:100067. doi: https://doi.org/10.1016/j.hazl.2022.100067.
  13. Hu W-Y, Lu R, Hu DP, Imir OB, Zuo Q, Moline D, Afradiasbagharani P, Liu L, Lowe S, Birch L, Griend DJV, Madak-Erdogan Z, Prins GS. Per- and polyfluoroalkyl substances target and alter human prostate stem-progenitor cells. Biochemical Pharmacology. 2022;197:114902. doi: https://doi.org/10.1016/j.bcp.2021.114902.
  14. Hossain F, Dennis NM, Subbiah S, Karnjanapiboonwong A, Guelfo JL, Suski J, Anderson TA. Acute Oral Toxicity of Nonfluorinated Fire-Fighting Foams to Northern Bobwhite Quail (Colinus virginianus). Environmental Toxicology and Chemistry. 2022;41(8):2003-7. doi: https://doi.org/10.1002/etc.5398.
  15. Herkert NJ, Kassotis CD, Zhang S, Han Y, Pulikkal VF, Sun M, Ferguson PL, Stapleton HM. Characterization of Per- and Polyfluorinated Alkyl Substances Present in Commercial Anti-fog Products and Their In Vitro Adipogenic Activity. Environmental Science & Technology. 2022;56(2):1162-73. doi: 10.1021/acs.est.1c06990.
  16. Gharehveran MM, Walus AM, Anderson TA, Subbiah S, Guelfo J, Frigon M, Longwell A, Suski JG. Per- and polyfluoroalkyl substances (PFAS)-free aqueous film forming foam formulations: Chemical composition and biodegradation in an aerobic environment. Journal of Environmental Chemical Engineering. 2022;10(6):108953. doi: https://doi.org/10.1016/j.jece.2022.108953.
  17. Boyd RI, Ahmad S, Singh R, Fazal Z, Prins GS, Madak Erdogan Z, Irudayaraj J, Spinella MJ. Toward a Mechanistic Understanding of Poly- and Perfluoroalkylated Substances and Cancer. Cancers (Basel). 2022;14(12). Epub 2022/06/25. doi: 10.3390/cancers14122919. PubMed PMID: 35740585; PMCID: PMC9220899.

2021

  1. Shojaei M, Kumar N, Chaobol S, Wu K, Crimi M, Guelfo J. Enhanced Recovery of Per- and Polyfluoroalkyl Substances (PFASs) from Impacted Soils Using Heat Activated Persulfate. Environmental Science & Technology. 2021;55(14):9805-16. doi: 10.1021/acs.est.0c08069.
  2. Rashid F, Irudayaraj J, editors. North American Travel Grant Effect of PFOA on DNA Methylation and Tight Junctions in Mouse Colon Tissues. INTERNATIONAL JOURNAL OF TOXICOLOGY; 2021: SAGE PUBLICATIONS INC 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA.
  3. Liu Z, Bentel MJ, Yu Y, Ren C, Gao J, Pulikkal VF, Sun M, Men Y, Liu J. Near-Quantitative Defluorination of Perfluorinated and Fluorotelomer Carboxylates and Sulfonates with Integrated Oxidation and Reduction. Environmental Science & Technology. 2021;55(10):7052-62. doi: 10.1021/acs.est.1c00353.
  4. Imir OB, Kaminsky AZ, Zuo QY, Liu YJ, Singh R, Spinella MJ, Irudayaraj J, Hu WY, Prins GS, Madak Erdogan Z. Per- and Polyfluoroalkyl Substance Exposure Combined with High-Fat Diet Supports Prostate Cancer Progression. Nutrients. 2021;13(11). Epub 2021/11/28. doi: 10.3390/nu13113902. PubMed PMID: 34836157; PMCID: PMC8623692.
  5. Hunter B, Walker I, Lassiter R, Lassiter V, Gibson JM, Ferguson PL, Deshusses MA. Evaluation of private well contaminants in an underserved North Carolina community. Science of The Total Environment. 2021;789:147823. doi: https://doi.org/10.1016/j.scitotenv.2021.147823.
  6. Guelfo JL, Korzeniowski S, Mills MA, Anderson J, Anderson RH, Arblaster JA, Conder JM, Cousins IT, Dasu K, Henry BJ, Lee LS, Liu J, McKenzie ER, Willey J. Environmental Sources, Chemistry, Fate, and Transport of Per- and Polyfluoroalkyl Substances: State of the Science, Key Knowledge Gaps, and Recommendations Presented at the August 2019 SETAC Focus Topic Meeting. Environmental Toxicology and Chemistry. 2021;40(12):3234-60. doi: https://doi.org/10.1002/etc.5182.
  7. Getzinger GJ, Higgins CP, Ferguson PL. Structure Database and In Silico Spectral Library for Comprehensive Suspect Screening of Per- and Polyfluoroalkyl Substances (PFASs) in Environmental Media by High-resolution Mass Spectrometry. Analytical Chemistry. 2021;93(5):2820-7. doi: 10.1021/acs.analchem.0c04109.
  8. Getzinger GJ, Ferguson PL. High-Throughput Trace-Level Suspect Screening for Per- and Polyfluoroalkyl Substances in Environmental Waters by Peak-Focusing Online Solid Phase Extraction and High-Resolution Mass Spectrometry. ACS ES&T Water. 2021;1(5):1240-51. doi: 10.1021/acsestwater.0c00309.
  9. Gao J, Liu Z, Bentel MJ, Yu Y, Men Y, Liu J. Defluorination of Omega-Hydroperfluorocarboxylates (ω-HPFCAs): Distinct Reactivities from Perfluoro and Fluorotelomeric Carboxylates. Environmental Science & Technology. 2021;55(20):14146-55. doi: 10.1021/acs.est.1c04429.
  10. Cheng Z, Chen Q, Liu Z, Liu J, Liu Y, Liu S, Gao X, Tan Y, Shen Z. Interpretation of Reductive PFAS Defluorination with Quantum Chemical Parameters. Environmental Science & Technology Letters. 2021;8(8):645-50. doi: 10.1021/acs.estlett.1c00403.
  11. Che S, Jin B, Liu Z, Yu Y, Liu J, Men Y. Structure-Specific Aerobic Defluorination of Short-Chain Fluorinated Carboxylic Acids by Activated Sludge Communities. Environmental Science & Technology Letters. 2021;8(8):668-74. doi: 10.1021/acs.estlett.1c00511.
  12. Charbonnet JA, Rodowa AE, Joseph NT, Guelfo JL, Field JA, Jones GD, Higgins CP, Helbling DE, Houtz EF. Environmental Source Tracking of Per- and Polyfluoroalkyl Substances within a Forensic Context: Current and Future Techniques. Environmental Science & Technology. 2021;55(11):7237-45. doi: 10.1021/acs.est.0c08506.
  13. Ahmad S, Wen Y, Irudayaraj JMK. PFOA induces alteration in DNA methylation regulators and SARS-CoV-2 targets Ace2 and Tmprss2 in mouse lung tissues. Toxicology Reports. 2021;8:1892-8. doi: https://doi.org/10.1016/j.toxrep.2021.11.014.

 

2020

  1. Zhuo Q, Wang J, Niu J, Yang B, Yang Y. Electrochemical oxidation of perfluorooctane sulfonate (PFOS) substitute by modified boron doped diamond (BDD) anodes. Chemical Engineering Journal. 2020;379:122280. doi: https://doi.org/10.1016/j.cej.2019.122280.
  2. Zhang M, Yamada K, Bourguet S, Guelfo J, Suuberg EM. Vapor Pressure of Nine Perfluoroalkyl Substances (PFASs) Determined Using the Knudsen Effusion Method. Journal of Chemical & Engineering Data. 2020;65(5):2332-42. doi: 10.1021/acs.jced.9b00922.
  3. Yu Y, Zhang K, Li Z, Ren C, Chen J, Lin Y-H, Liu J, Men Y. Microbial Cleavage of C–F Bonds in Two C6 Per- and Polyfluorinated Compounds via Reductive Defluorination. Environmental Science & Technology. 2020;54(22):14393-402. doi: 10.1021/acs.est.0c04483.
  4. Yu Y, Zhang K, Li Z, Ren C, Chen J, Lin YH, Liu J, Men Y. Microbial Cleavage of C-F Bonds in Two C(6) Per- and Polyfluorinated Compounds via Reductive Defluorination. Environ Sci Technol. 2020;54(22):14393-402. Epub 2020/10/31. doi: 10.1021/acs.est.0c04483. PubMed PMID: 33121241.
  5. Wen Y, Mirji N, Irudayaraj J. Epigenetic toxicity of PFOA and GenX in HepG2 cells and their role in lipid metabolism. Toxicology in Vitro. 2020;65:104797. doi: https://doi.org/10.1016/j.tiv.2020.104797.
  6. Wen Y, Chen J, Li J, Arif W, Kalsotra A, Irudayaraj J. Effect of PFOA on DNA Methylation and Alternative Splicing in Mouse Liver. Toxicology Letters. 2020;329:38-46. doi: https://doi.org/10.1016/j.toxlet.2020.04.012.
  7. Tenorio R, Liu J, Xiao X, Maizel A, Higgins CP, Schaefer CE, Strathmann TJ. Destruction of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foam (AFFF) with UV-Sulfite Photoreductive Treatment. Environmental Science & Technology. 2020;54(11):6957-67. doi: 10.1021/acs.est.0c00961.
  8. Schaefer CE, Nguyen D, Culina VM, Guelfo J, Kumar N. Application of Rapid Small-Scale Column Tests for Treatment of Perfluoroalkyl Acids Using Anion-Exchange Resins and Granular Activated Carbon in Groundwater with Elevated Organic Carbon. Industrial & Engineering Chemistry Research. 2020;59(38):16832-7. doi: 10.1021/acs.iecr.0c02290.
  9. Rashid F, Ramakrishnan A, Fields C, Irudayaraj J. Acute PFOA exposure promotes epigenomic alterations in mouse kidney tissues. Toxicology Reports. 2020;7:125-32. doi: https://doi.org/10.1016/j.toxrep.2019.12.010.
  10. Rashid F, Ahmad S, Irudayaraj JMK. Effect of Perfluorooctanoic Acid on the Epigenetic and Tight Junction Genes of the Mouse Intestine. Toxics. 2020;8(3):64. PubMed PMID: doi:10.3390/toxics8030064.
  11. McDonough CA, Choyke S, Ferguson PL, DeWitt JC, Higgins CP. Bioaccumulation of Novel Per- and Polyfluoroalkyl Substances in Mice Dosed with an Aqueous Film-Forming Foam. Environmental Science & Technology. 2020;54(9):5700-9. doi: 10.1021/acs.est.0c00234.
  12. Liu W, Irudayaraj J. Perfluorooctanoic acid (PFOA) exposure inhibits DNA methyltransferase activities and alters constitutive heterochromatin organization. Food and Chemical Toxicology. 2020;141:111358. doi: https://doi.org/10.1016/j.fct.2020.111358.
  13. Jabeen M, Fayyaz M, Irudayaraj J. Epigenetic Modifications, and Alterations in Cell Cycle and Apoptosis Pathway in A549 Lung Carcinoma Cell Line upon Exposure to Perfluoroalkyl Substances. Toxics. 2020;8(4):112. PubMed PMID: doi:10.3390/toxics8040112.
  14. Herkert NJ, Merrill J, Peters C, Bollinger D, Zhang S, Hoffman K, Ferguson PL, Knappe DRU, Stapleton HM. Assessing the Effectiveness of Point-of-Use Residential Drinking Water Filters for Perfluoroalkyl Substances (PFASs). Environmental Science & Technology Letters. 2020;7(3):178-84. doi: 10.1021/acs.estlett.0c00004.
  15. Guelfo JL, Wunsch A, McCray J, Stults JF, Higgins CP. Subsurface transport potential of perfluoroalkyl acids (PFAAs): Column experiments and modeling. Journal of Contaminant Hydrology. 2020;233:103661. doi: https://doi.org/10.1016/j.jconhyd.2020.103661.
  16. Dasgupta S, Reddam A, Liu Z, Liu J, Volz DC. High-content screening in zebrafish identifies perfluorooctanesulfonamide as a potent developmental toxicant. Environmental Pollution. 2020;256:113550. doi: https://doi.org/10.1016/j.envpol.2019.113550.
  17. Bentel MJ, Yu Y, Xu L, Kwon H, Li Z, Wong BM, Men Y, Liu J. Degradation of Perfluoroalkyl Ether Carboxylic Acids with Hydrated Electrons: Structure–Reactivity Relationships and Environmental Implications. Environmental Science & Technology. 2020;54(4):2489-99. doi: 10.1021/acs.est.9b05869.
  18. Bentel MJ, Liu Z, Yu Y, Gao J, Men Y, Liu J. Enhanced Degradation of Perfluorocarboxylic Acids (PFCAs) by UV/Sulfite Treatment: Reaction Mechanisms and System Efficiencies at pH 12. Environmental Science & Technology Letters. 2020;7(5):351-7. doi: 10.1021/acs.estlett.0c00236.

 

zacaption area